A mouse brain homolog of the Drosophila Shab K+ channel with conserved delayed-rectifier properties.
نویسندگان
چکیده
We have cloned and expressed a mouse brain K+ channel that is the homolog of the Drosophila Shab K+ channel. Mouse and Drosophila Shab K+ channels (mShab and fShab, respectively) represent an instance of K+ channels and structurally related species that are both functionally and structurally conserved; most kinetic, voltage-sensitive, and pharmacological properties are similar for the 2 channels. The greatest functional difference between the currents is recovery from inactivation, which is several times slower for mShab than for fShab currents. In addition to conserved structure, the mShab polypeptide has an unusually long nonconserved region at the carboxyl end of the protein. Truncation of 293 residues from the carboxyl end produced no noticeable change in voltage-sensitive, kinetic, or pharmacological properties. Thus, the measured functional properties of mShab are determined by the remaining 564 residues, most of which are conserved. The mShab and fShab channels are naturally occurring structural variants having substitutions in conserved portions that appear relatively neutral with respect to all measured properties except for, possibly, the rate of recovery from inactivation. The mShab current closely resembles a native delayed-rectifier-type potassium current, IK, in hippocampal neurons.
منابع مشابه
Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels.
Determining the contribution of a single type of ion channel to information processing within a neuron requires not only knowledge of the properties of the channel but also understanding of its function within a complex system. We studied the contribution of slow delayed rectifier K+ channels to neural coding in Drosophila photoreceptors by combining genetic and electrophysiological approaches ...
متن کاملExistence of a delayed rectifier K+ current in the membrane of human embryonic stem cel
Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...
متن کاملThe major delayed rectifier in both Drosophila neurons and muscle is encoded by Shab.
The delayed rectifier K+ current in Drosophila is similar to the classical delayed rectifier, originally described by Hodgkin and Huxley. Drosophila provides unique tools of mutant analysis to unambiguously determine the genetic identity of this native K+ current. We identified the Shab gene as the exclusive gene underlying delayed rectifier currents in both muscle and neurons. In muscles, a ge...
متن کاملUnmasking of a novel potassium current in Drosophila by a mutation and drugs.
The delayed rectifier potassium current plays a critical role in cellular physiology. This current (I(K)) in Drosophila larvae is believed to be a single current. However, a likely null mutation in the Shab K(+) channel gene (Shab(3)) reduces I(K) but does not eliminate it. This raises a question as to whether or not the entire I(K) passes through channels encoded by one gene. Similarly, an inc...
متن کاملVOLTAGE-GATED K+ CHANNELS IN DROSOPHILA PHOTORECEPTORS Biophysical study of neural coding
The activity of neurons is critically dependent upon the suite of voltage-dependent ion channels expressed in their membranes. In particular, voltage-gated K+ channels are extremely diverse in their function, contributing to the regulation of distinct aspects of neuronal activity by shaping the voltage responses. In this study the role of K+ channels in neural coding is investigated in Drosophi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 11 3 شماره
صفحات -
تاریخ انتشار 1991